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I. Summary

The research during this 6 month grant was devoted to finalizing our work on the effect

of electric fields on dielectric nanodroplets. as may be found during the breakup of

electrified nanojets and colloidal thrusters. In our extensive molecular dynamics

simulations, preformed for a I Onm droplet made of formamide molecules, the response

of the nano-droplet to uniform electric fields was explored. Increasing fields were

found to cause the initially spherical droplet to undergo gradual slight ellipsoidal

deformation that culminated in a shape instability and a first-order shape transition to a

slender needle at - 0.55 V/nm. For larger fields enhanced dipole ordering that leads to a

first-order electro-crystallization transition was found, portrayed in sharp changes the

molecular diffusion constant and in a positional order parameter. Both transitions were

found to exhibit hysteresis upon decreasing the electric field. A dielectric continuum

model was developed and tested against the results of the molecular dynamics

simulations, resulting in good agreement.

Detailed descriptions of the molecular dynamics simulations, the

analytical continuum model, and our analysis are given in section IV,

titled:

Dielectric Nanodroplets: Structure, Stability, Thermodynamics, Shape

Transitions and Electrocrystallization in Applied Electric Fields

II. Archival Publications

1. "Shape Transformation and Electrocrystallization of Polar Liquid Drops", W.D.
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Luedtke, J. Gao and U. Landman, Phys. Rev. Lett. (2008).

2. " Dielectric Nanodroplets: Structure, Stability, Thermodynamics, Shape Transitions

and Electrocrystallization in Applied Electric Fields", W.D.Luedtke, J. Gao and U.

Landman, Phys. Rev. B (2008).
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1. Dr. Uzi Landman, Professor and Principal Investigator.

2. Dr. David Luedtke, Senior Research Scientist.

3. Dr. Jianping Gao, Senior Research Scientist

VI. Dielectric Nanodroplets: Structure, Stability,
Thermodynamics, Shape Transitions and
Electrocrystallization in Applied Electric Fields

The following is a manuscript prepared for publication by W. D. Luedtke, Jianping Gao

and Uzi Landman

The response of a dielectric I Onm in diameter nano-droplet made of formamide

to uniform electric fields is explored with molecular dynamics simulations. Increasing

fields causes the initially spherical droplet to undergo gradual slight ellipsoidal

deformation that culminates in a shape instability and a first-order shape transition at

0.55 V/nm to a slender needle. For larger fields we find enhanced dipole ordering that

leads to a first-order electro-crystallization transition, portrayed in sharp changes the

molecular diffusion constant and in a positional order parameter. Both transitions exhibit

hysteresis upon decreasing the electric field. A dielectric continuum model is developed
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and tested against the results of the molecular dynamics simulations, resulting in good

agreement.

I. INTRODUCTION

Neutral and charged dielectric drops of macroscopic dimensions and their

response to applied uniform electric fields have been a subject of continued basic and

applied research interest. A dielectric drop placed in an electric field is polarized and the

balance between the electrical forces on the induced surface charges and the forces

originating from capillary surface tension determines the shape the drop. Alternatively,

this can be stated as a complex minimization problem searching for the shape that yields

the lowest total energy (the sum of the electrical and surface contributions). The difficulty

lies in the interdependence of the electric field distribution (as well as the surface tension

or surface energy) and the shape, which must be determined self-consistently. This

competition between electrical and capillary contributions emerges in many areas

involving electrohydrodynamic flow. For example, some of the most relevant physics

involved in colloid thrusters and electrospray devices operating in the cone-jet mode may

be seen already in the simpler problem of an elongated liquid drop in a uniform external

electric field, including the formation of electrified jets and emission and acceleration of

small charged droplets at the ends of the elongated parent drops. This is a classic problem

in the study of electrified fluids that has been studied both experimentally and

theoretically [R12,23-24,31,33,38] and parallels similar phenomena in ferromagnetic

fluid drops under the influence of an externally applied magnetic field (R12,23,38).

Devices producing and utilizing drops are rapidly approaching nanometer scales and it is

important to identify and understand the new phenomena that may emerge in the
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electrohydrodynamics of fluid flow at these length scales, particularly those pertaining to

the formation and stability of nano-scale droplets.

Here we focus on a molecular fluid, formamide HCONH 2 chosen because of it's

high molecular electric dipole moment ( 3.7 D, that is twice that of an H20 molecule) and

the consequent propensity for solvation of salts at relatively high concentrations, thus

making it a working material in current experimental, and theoretical, studies of

investigations of electrosprays, electrified jets and colloidal thrusters [R 10-11,13]. We

note that formamide has also been the focus of experimental and theoretical studies since

it represents a simple model compound displaying the same type of hydrogen bonding

between amide groups present in many biological systems.

We perform a systematic study of a 10 nm diameter formamide droplet placed in

a constant uniform electric field along a given axis (the z-axis). The field strengths we

use are on the order of I V/nm, a value that is of relevance to current research in areas

related to the formation and stability of droplets in electrosprays and colloid thrusters

(ref. RI 1). This magnitude of the field is large enough to generate a pronounced

elongation of the formamide droplet. We vary the field strengths over a wide range and

compare the results obtained for these nano-scale dielectric drops to published

continuum theory predictions (ref. R 12,R23,R24,R3). Our results indicate that under the

influence of fields of about 1.0-1.5 V/nm these drops will exhibit shape changes,

transforming from equilibrium spheres at zero field to ellipsoidal shapes with long axis

(c) to-short axis (a) ratios, ?. =c/a, of the order of -15-20. Furthermore, we find that for

larger external electric fields first-order electro-crystallization of the drop occurs..
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Namely the external field modifies the thermodynamics and phase behavior of a

dielectric droplet.

It if of interest to note that electric field strengths of V/nm are ubiquitous in the

study of fluid/vacuum interfaces involving charged and dielectric fluids under the

influence of electric fields. In electrospray devices the electric fields at the apex of a

Taylor cone [R23], where a fine jet is formed, is on the order of V/nm, even though the

average field due the nozzle/extractor potential may be much smaller. This is true as well

in the high curvature regions of droplets of dielectric/ionic mixtures in electric fields that

are large enough to cause elongation and possible emission of charged droplets. Even

under external field-free conditions, a charged droplet may fission or emit cluster ions

when the excess charge is large enough (ref. R19), due to it's self-field, and under such

circumstances the maximum field at the surface can again be of V/nm magnitude at the

regions where much of the interesting and relevant physics takes place, e.g. where

instabilities and charged jets emanate and clusters detach.

II. COMPUTATIONAL METHODOLOGY

The principal theoretical methodology employed by us is molecular dynamics

(MD) simulations where the equations of motions of the interacting particles are solved

numerically with very high spatial and temporal resolution (typically 0.01 nm and under

0.01 ps. To simulate systems that are large enough, thus allowing assessment of concepts

derived on the basis of continuum theories, it is important to utilize simple efficient

representations of the interatomic forces. Formamide is a planar molecule whose internal
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degrees of freedom and intramolecular forces are of minor significance for the

phenomena in which we are interested here. Consequently, we treat the formamide

molecule as a solid body using quaterion dynamics (ref. RI), implemented via a mid-

step implicit leap-frog algorithm (ref. R2) that has been shown to be an extremely stable

integration scheme (with only a very small energy drift occurring for long simulation

periods). The geometry of the molecule is taken from high-resolution X-ray studies of

crystalline formamide (ref. R3).

In our simulations we employed the AMBER force field parameters (refs. R4-5)

for the intermolecular van der Waals interactions between the atomic sites located on

different molecules. For the atoms of the formamide molecule we use the CHELP-BOW

(ref. R6) partial charges; these have been shown to give a good overall description of the

electrostatic potential of the molecules. The weak inter-molecular van der Waals

interactions are truncated on a group basis through the use of a smooth switching function

(ref. R7) that depends on the distance between molecular centers of mass so that entire

groups of atoms on one molecule interact with the entire group of atoms on another

molecule, and dipole interactions are not truncated.

Since there have been few large-scale atomistic simulation involving

electrohydrodynamics of complex fluids, we looked to simple initial studies to learn what

issues are important in faithfully modeling such systems. In particular, we first explored

using long-range Coulombic interatomic potentials with finite interaction cutoffs as this

was a simple first approach that is sufficient in many simulations. However when we

performed test studies of formamide droplets in uniform external electric fields of

varying strengths, we noted significant cooperative effects within the dipolar fluid that
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emerged as the cutoffs were increased from values of- 0.9 - 1.2 nm (typical values in

many studies involving atomic partial charges) to 3.6 nm. Droplets (which when studied

with small interaction cutoffs remain spherical) elongate as the cutoff is increased due to

cooperative dipole-dipole and dipole-field interactions, in qualitative agreement with

existing continuum theories of dielectric fluids in electric fields (refs. R12, R23-24).

From these observations it became apparent that the long-range interactions needed to be

treated more accurately (i.e., with no interaction range cutoffs).

To address these issues we implemented a parallel version of the fast multipole

method, FMM, (ref. R8), tailored for our purposes. In the FMM a system is spatially

represented in a large roughly cubic "root-cell". The latter contains a hierarchy, or "tree-

structure" division, of "child" sub-cells obtained by dividing the root-cell into octants

and then allowing these child cells to be the parent cells of further binary subdivisions

until one reaches the smallest "leaf' cell. Electric multipole moments are computed for

all cells at all levels from the atomic charges belonging to molecules contained within the

cells. Atoms belonging to molecules in the basic leaf cell interact directly with all the

atoms of molecules in neighboring leaf cells, while they interact only with the multipole

moments of more remote cells; the more remote the cells are from the central leaf cell,

the larger the cells are allowed to be. Thus an atom interacts with a small set of

multipoles representing entire, increasingly larger, volumes of remote space, rather than

with all of the atoms contained within it - this is the main feature that makes it possible to

efficiently model large systems involving long-range interactions. We carried the

multipole calculations to m=6 (m=0 and I are the monopole and dipole levels). The size
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of the smallest, leaf, cell was 1.2 nm and this value was used as the spherical cutoff for

the short range van der Waals interactions.

For the simulations performed at constant temperature, we use a velocity

rescaling algorithm due to Berendsen et. al (ref. R41, also see ref. RI, Eq. 7.59) with a

relaxation time of 3 ps. This is applied only to the molecular center of mass velocities.

We have observed that equipartition of energy between translational and rotational

degrees of freedom is very rapid and there is no need to directly modify the rotational

kinetic energies. Additional details of our code necessary for this study will be described

further as we discuss our results.

III. PROPERTIES OF THE FIELD - FREE LIQUID

To ascertain the faithfulness of the parametrized interaction potentials used in our

simulations we tested first certain thermodynamic and physical properties of the

simulated model, including evaluations of the melting point, surface tension, diffusion

constant, and dielectric constant. Since experiments on liquid formamide are commonly

performed at room temperature (that is about 25K above the melting point of crystalline

formamide), we focus here on results obtained from room temperature MD simulations.

Melting point, density, diffusion constant and surface tension

The melting point of the modeled liquid formamide was estimated as the

coexistence temperature of the crystalline and liquid phases. A crystalline slab containing

-5200 molecules in which there were two free surfaces (vacuum interfaces) along the z-

axis, was constructed, with two-dimensional periodic boundary conditions (2D pbc's)
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imposed in the x-y plane and reflecting boundary conditions whenever a gas phase

molecule encounters the ends of the computational cell. In these simualtions we

replicated the basic root-cell and "stacked" three of them along the z-axis to create a long

narrow tree-structure (requiring an appropriately modified non-standard FMM algorithm:

this is particularly useful for efficient simulations of systems such as highly elongated

droplets and long liquid jets). The size of each FMM root-cell was -5.8 nm (in the x

direction), 4.7 nm (in y) and by 5.6 nm (in z) giving a z-dimension of the calculational

cell of-3x5.6nm - 16.8 nm, while the solid slab, centered about z=0, occupied -11 nm

along z, leaving -3 nrn of free space at each end of the computational cell. After

equilibrating the system well below the experimental melting point, the energy of the

system was elevated via scaling of the particles' velocities with subsequent lengthy

constant energy equilibrations, until approximately 1/3 of the system was melted and

continued to evolve in equilibrium with the remaining solid part. This point of

liquid/solid coexistence point, i.e. the melting point, was found to be close to 285K,

which is 9 K above the experimental value of 276K (ref R21). Since our plan was to

perform our electrical field studies at room temperature, we chose to adjust the

temperature of these simulations to a somewhat higher temperature (310 K) to account

for the higher melting temperature of the simulated mode compared to experiment, and

to assure that we are well into the temperature range corresponding to a liquid phase; the

temperature difference between 300K and 310K is not expected to effect the physical

behaviour of our system in any noticeable manner. The density of the crystal was found

in our simulations to be 1.26 g/cm 3 in agreement with the experimental value (1.26

g/cm 3 ) (ref. R39).
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The density and diffusion constant of liquid formamide were determined by us

from constant (zero) pressure simulations of bulk liquid formamide, where the spatial

dimensions of a cubical root-cell were allowed to vary, while using 3D pbc and the FMM

using a modified constant-pressure algorithm (ref. R41, RI). We have also modified the

FMM algorithm so that when employing pbc the tree-structure of the root-cell, along with

all its computed multipoles, are replicated as neighboring image cells. In this way atoms

in the central computational cell are acted on by the correct multipole structure as they

interact with all of their neighboring periodic image cells. The width of the cubical root

cell was -6 nm. The density of the pure formamide liquid (at 310K) was found to be

-1.10 g/cm 3 in good agreement with the experimental value of 1.13 g/cm 3 (R21) and the

computed diffusion constant was found to be -1.2 x 10- 5 cm2/sec which compares well

with values ranging from 0.55 to 1.27 x 10- 5 cm2/sec estimated from previous

experiments and simulations (ref R40).

Since capillary forces are a major driving force in the phenomena that we study, it

is important to obtain an estimate for the surface tension of the simulated liquid. To this

aim we determined the surface tension of liquid formamide in two different ways. First,

we simulated a liquid slab maintained at 310K with the same number of molecules and

type of boundary conditions as in the liquid-solid coexistence study described above. In

this case we replicate the basic root-cell three times along the z-axis. The width of each

cubical FMM root-cell was -5.6 nm giving a z-dimension of the calculational cell of

3x5.6- l7rim, while the liquid slab, centered about z=0, occupied -11 nm along z,

leaving sufficient space to establish both liquid and vapor regions.
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The normal (PN) and tangential (PT) components of the molecular pressure tensors

were used to find the surface tension y by integrating (PN - PT) across each liquid

interface (ref. R20). The value that we found , = 0.046 N/m compares with the

experimentally determined value of y,xp = 0.057 (ref R21).

In an alternative method, we used the fact that the pressure inside a spherical

droplet of radius R is P = 2y/R. We formed a spherical drop of formamide by 'carving

out' a -10 nm diameter drop from the bulk constant pressure simulation system that we

described earlier, and allowed it to equilibrate further using 'absorbing' boundary

conditions; namely, the pbc were lifted and the few evaporating molecules that crossed

the boundaries of the 19.2 nm wide FMM root cell were removed from the system. Using

the averaged hydrostatic pressure in the interior of the drop and the drop's equimolar

radius, we computed a value of y = 0.046 N/m in agreement with our previous estimate.

The density in the interior of the drop interior was found to be about 1.11 g/cm3; results

obtained from simulations of a larger diameter drop (20 nm) agree well with these

values).

IV. FIELD-INDUCED SHAPE AND CRYSTALLIZATION
TRANSITIONS

In this section we focus on the thermodynamic and electric-field induced

structural transformations of the dielectric nanodroplet, with the strength of the externally

applied electric field serving as a control parameter. Our investigations were carried out

at T=3 1 OK (see earlier discussion) and involved a droplet with a diameter of 10 nm; the

droplet contains 7150 formamide molecules (that is, 6 x 7150 - 43000 atoms carrying

partial charges). The properties of the drop as a function of the strength of the applied
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electric field (from 0 to 3 V/nm) were determined from simulations where for each

successively incremented value of the field the drop was fully equilibrated before

equilibrium averaged results were computed.

Prior to presentation of our results we remark on certain aspects of the analysis of

the MD results. Shape deformations of liquid drops induced by uniform external electric

fields leading to the appearance of structures with geometries close to prolate spheroids,

have been described experimentally and theoretically (using continuum pictures) (refs.

R23, R24). Furthermore, under certain circumstances the emergence of conical regions

near the ends of the elongated structures has been observed. In the present study we have

found that the shape of a 10 nm formamide drop placed in a uniform electric field may

indeed be well characterized as a prolate spheroid (with the aspect ratio ), = c/a between

the semi-major (long) and semi-minor (short) axes, varying as a function of the field

strength), with some deviation emerging near the ends for sufficiently strong fields (i.e.,

for highly elongated spheroidal shapes). A prolate spheroid (ellipsoid) is described by the

equation (r,/a)2 + (z/c) 2 = 1, and plots of r 2 vs z2 from our simulation data exhibit a

highly linear relationship; the minor and major axes and the corresponding aspect ratios,

k, are determined from least square fits to the above equation for different values of the

applied field.

In finding the axial profile (r, vs. z), the z-axis (along which the external electric

field is applied and the droplet elongates) is divided into bins of width dz = 0.2 nm and

the number of molecules Nz in each bin is computed. Using the mean density, p, inside

the droplet, an equimolar radius r, is computed for each z-bin with the relation

p7rZ2dz=N,. Additionally, for the chosen bin width dz, one can determine a cutoff radius
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r, that corresponds to one molecule, N,= 1.This provides a natural cutoff for determining

the size of the droplet, and in performing the least square fit of the averaged profile data

to a prolate spheroid, contributions are included only from points within the cutoff radius;

this procedure yields prolate spheroid shapes are consistent with the droplet profiles for

both small and large elongations.

The density p inside a droplet is determined for each field strength by time

averaging the density inside a test volume located in the interior of the droplet and having

the representative shape of the droplet shape. This is done by making first a rough

estimate of the semi-minor and semi-major axes using radial as well as axial binning of

the atomic positions and determining the largest non-empty radial and axial bins

respectively. The internal prolate spheroid test volume is defined by scaling the so

determined lengths of the axes by 34; this procedure essentially alleviates uncertainties

due to surface effects. The result is not sensitive to the scale factor (3/4) that we

employed here; scaling the original axis estimates by 1/2 gives virtually the same density.

Instability, elongation, ordering and electrocrystallization

The effect of the external electric field is reflected in geometrical, structural, and

dynamical properties of the droplet, displayed in Fig. 1, where we show the variation with

the applied field of the aspect ration X= c/a, the molecular diffusion constant D. the

normalized dipole moment (per molecule) of the droplet in the field direction (z), P =a /

laF (where LF the dipole moment of a formamide molecule), and the order paramer 06 =

< IN- ., exp(i60j)> expressing the degree of hexagonal order in the droplet, given by
k.jcnn
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the above average (taken over all the molecules in the droplet, 1 < k < N, and if desired

over a certain simulation interval), with the angle 0i (taken for each of theN,,

molecules (j), that are nearest neighbors (nn) to molecule k), subtended by the vector

from the droplet center of mass (cm) to the cm of the k-th molecule and the vector

connecting the droplet cm and the cm of jth neighboring molecule. Included also in

Fig. I a are snapshots of the droplet for selected values of the electric field. An assembly

of representative configurations of the droplet, and some of the associated physical

characteristics, taken for various values of the applied electric field, is given in Fig. 2.

Certain distinct features and patterns are evident from inspection of Fig. 1, including

field-induced shape elongation, ordering, and electric-field-induced crystallization (or

electro-crystallization (EE)) that is found to occur for stronger fields. Additionally we

observed pronounced hysteresis when the magnitude of the applied field is decreased.

For fields up to 0.5 V/nm the droplet elongates mildly in the direction of the

applied field. However, for larger fields the droplet becomes metastable, undergoing a

large shape transition between Ee = 0.5 V/nm and 0.625 V/nm that is portrayed by a

variation in . from 1.5 to 12 in this range (see Fig. la) which results in a needle shaped

droplet (see upper part of Fig. 2). The shape transition is accompanied by an increase in

the normalized z-dipole moment from about 0.1 to 0.7 (Fig. I d). Throughout the

elongation transition (with gradual elongation continuing past the shape-transition, for

fields in the range of 0.625 V/nm < E,j < 1.4375 V/nm the droplet remains liquid (see the

diffusion constant D and the order parameter 06 in Fig.lb and Ic for E < 1.4375 V/nm,

respectively); note the gradually diminished molecular diffusivity for fields in the range

of I V/nm and 1.4375 V/nm.
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Shape instability of dielectric droplets at critical electric fields have been the

subject of earlier studies (refs R25, R31). Taylor (ref R31, R25) predicted theoretically

that a droplet of initial radius R (under field-free conditions) will undergo instability for

an external field strength E satisfying (MKS units) E(47t&OR/y)' 1 Cl .625. Using, for the

droplet studied here, y = 0.046 N/m for the computed surface tension and R=4.84 nm for

the computed equimolar radius, yields a predicted critical field E, I= 0.48 V/nm, which is

only slightly lower than the field found in our simulation at the onset of instability

leading to the shape transition; when the experimental surface tension y = 0.057 N/m is

used in the above, the predicted critical field strength is 0.53 V/nm.

At a field of 1.4375 V/nm a second critical filed is reached, signaled by a small,

but discontinues, change in shape (further elongation to X 20), and an increase in p ),

and, more remarkably, by a precipitous increase in the hexagonal order in the droplet and

concomitant discontinuous vanishing of the molecular diffusion in the droplet. These

changes are the result of a field-induced electrocristallization (ee) phase transition

occurring at Ee. No essential changes occur for higher fields.

When the strength of the electric field is lowered from the of electrocrystallized

state the system exhibits a hysteretic behavior. Two transitions are found. The first

occurs near I V/nm, where solid/liquid (sl) coexistence emerges; see middle and bottom

configurations displayed in Fig. 2, where the middle (small z) region of the droplet is

characterized by crystalline order, while the regions closer to the droplet ends are liquid-

like (note the needle shaped droplet with k z 19 shown in the middle of Fig.2, exhibiting

a non-uniform distribution of the (normalized) dipole moment (p ) with the lower values

at the droplet's ends reflectig a reduced degree of dipolar alignment at these disordered
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regions. As the field is further decreased the crystalline middle region gradually reduces

in size. However, while the diffusivity and the degree of hexagonal order are seen to

attain liquid-like values near E,j (see Fig.l, although the end regions of the droplet are

more disordered then the shrinking middle, with full disorder found only near E=0.7

V/nm)). the elongation (k) and z-dipole order parameters correspond to an elongated and

molecularly aligned (relatively high p ) droplet. Generally, we may summarize that the

trends observed during the solid/liquid coexistence stage are essentially the reverse of

those seen when the liquid droplet approaches the electrocrystallization transition from

lower fields.

The second hysteretic feature occurs for the liquid-lile droplet that persists in the

elongated and molecularly aligned state (characterized by relatively high values of ?, and

p) till E=0.375 V/nm), see Fig. 1. This type of hysteresis has been addressed in a

number of studies (refs. R12, R23).

We conclude this section with observations that we made from both constant

temperature and constant energy simulations pertaining to the state of the droplet after

switching-off (suddenly) of the electric field, starting from a highly ordered state, (e.g.

E=3 V/nm). In both simulations we found that the time-evolution for the return of the

droplet to the original spherical liquid disordered state is exponential with a time constant

of -200 ps. In the constant energy simulation, the temperature of the droplet decreases

(since in the recovery process the potential energy increases, i.e. becomes less negative)

from its initial 31 OK to 283K (which is essentially the same as the bulk freezing point of

285K determined by us for the simulated fluid, see discussion above).
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We have noted also that the state of the droplet at high field strength can be

ordered or disordered depending on the temperature so that there is an interplay between

temperature and applied field strength in the phase behavior of the dielectric droplet.

Taking the polar fluid to a high field strength state of polarization saturation is analogous

to the 'poling' process used to align dipolar domains in ferroelectric materials (ref R37)

in which a high dc electric field is applied to a sample at an elevated temperature and

after the domains are sufficiently aligned, the temperature is lowered back to room

temperature (in the presence of the field) to 'lock in' the highly aligned state. This

analogy suggests variations of our study in which the temperature of an ordered polarized

droplet at high field strength is lowered dramatically to see to what extent the polarization

and order can be 'locked in' and what behavior will be observed under variations of the

applied field.

V. COMPARISON TO CONTINUUM THEORY

The energetics and response of a dielectric droplet in a uniform external electric

field have been the subject of a number of theoretical studies (refs. R12, R23-R25). The

droplet shape is usually taken to be axisymmetric, similar to the experimentally observed

shapes, as well as the ones obtained from minimization of formulated free energy models

via droplet shape variation, as a function of the applied external electric field (refs R23,

R27, R36). There have also been reports on studies based on a force balance approach,

where the balance between the electrical and capillary stresses across the droplet surface

are considered (R12,23-25,31,33); in some of these approaches non-linear polarization

effects have been considered (R33). The droplet surface is often modeled as a prolate

(elongated) spheroid, PS, which captures the basic overall shape of a droplet undergoing
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elongation in an electric field. More complex droplet shapes, such as conical droplet ends

that can form under certain circumstances, were considered in more detailed studies (see

R 12 for review).

The wealth of detailed information generated in our MD simulations allows us to

explore and asses the appropriateness of continuum based models for the description of

the behavior of nano-scale droplets. Such evaluations led us to introduce a new free-

energy model in which the shape of the dielectric droplet is represented as a prolate

spheroid, but unlike previous models the dielectric constant of the droplet is taken to

depend on the strength of the applied electric field. This leads to a new term in the

expression for the free-energy. We will show that these modifications to the standard PS

free-energy model bring the results of the model into excellent agreement with our

atomistic MD simulations. Since the novel aspects of our model are associated with non-

linear dielectric properties we will refer to out model as the NLPS (non-linear prolate

spheroid) model.

At this point it is pertinent to define certain relevant quantities that are needed in the

subsequent discussion. We note that MKS units will be used by us here; this involves

scaling in some of the equations by a factor of 4n&o in comparison to the usage of

Gaussian units.

A. Dielectric Droplets in Strong Electric Fields

When a fluid droplet made up of polar molecules is subject to an external electric

field, the resulting field inside the droplet causes both an induced polarization of

molecular charge and a polarization due to dipole orientation. For small field strengths
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the polarization (dipole moment per unit volume) varies linearly with the internal field

strength, P=P/V = zo(f-l)E, where P is the relative permittivity, or dielectric constant

(R27,36). For larger applied fields, the competition between thermal and polarization

effects leads to a non-linear relation between the polarization and the field

P= P/V =&o(c(E)-l)E, (5.1)

Commonly, the field dependent permittivity &(E) continues to be refereed to as the

dielectric "constant". The study of non-linear dielectric saturation effects and in

particular the response of polar fluids to high field strengths has a long history and it

remains an active research area up to date (R32-35,43).

In modeling the droplet surface as that of a prolate spheroid (PS), the assumption

is normally made that the volume of the droplet remains constant as the droplet

undergoes elongation, namely V=47t/3a 2c=47t/3R 3 where c and a are the semi-major and -

minor axes of the ellipsoid and R is the radius of the initial spherical droplet when under

field-free conditions. The symmetry axis of the ellipsoid is taken as the z-axis and unless

otherwise stated the field and dipole components discussed below are understood to be

the z-component. Denoting the droplet's aspect ratio as X=c/a, the eccentricity, e, is given

by e2=l-1/X. We assume the droplet is surrounded by a vacuum (dielectric constant of

unity).

As aforementioned, an important point of departure of this work from previous

investigations is that the dielectric constant of the fluid droplet is taken as a material

dependent quantity that is a function &(E) of the internal electric field strength E inside
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the fluid. The field strength E (understood to be along z) inside a prolate spheroid

subject to a uniform parallel external field E0 is the sum of E0 and the opposing field

created by the induced polarization charges

E= E0 - (P/V)n(k)/co, (5.2)

where P is the ellipsoids total dipole moment along z and n(X) is the z-component of the

depolarizing factor (ref R27,36). n(k) is a function of the eccentricity, e(k), and therefore

the aspect ratio . through the implicit relation nQ,)=(1 -e 2)(ln[(l+e)/(I-e)]-2e))/(2e 3 ). The

two relations (Eqs. 5. land 5.2) give

Eo =[1 +(&(E)- I )n( ,)]E, (5.3 a)

and

P = &oV(F(E)-1)/{ 1 +((E)- 1)n(X) } Eo. (5.3b).

We note that Eq. 5.3b, along with the definitions in the preceding paragraph,

enables one to compute, using data from the MD simulation, the field-dependent

dielectric constant &(E) for a droplet having an interior field E with an external field E0.

For a given imposed external field strength, E0, the simulations allow us to obtain time

averaged values for the droplet's dipole moment, P, the semi-major and -minor axes (c

and a), aspect ratio . , associated droplet volume V, eccentricity and depolarizing factor
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n(),). These values are then used with Eq. 5.3b to obtain the dielectric constant &(E) as a

function of both E and E0 since E may be computed using Eq 5.3a.

The dielectric constant computed as a function of the external field strength E0

from the MD simulations using Eq 5.3b is shown in Fig. 3 (symbols). We observe a

general monotonic decrease of the dielectric constant for increasing field strengths, which

is consistent with experimental results for various liquids subjected to similar field

strengths as those used in our simulations (ref R34-35). The different symbols in Fig. 3

give information on the manner in which dielectric constants were computed. The filled

symbols in Fig 3 correspond to MD equilibrations in which the external field E0 (constant

for each run) was raised from the field of a preceding equilibration; namely, the

configuration at the end of a long equilibration performed at a lower external field serves

as the a starting point for a subsequent simulations performed for an incremented

(increased) value of the applied filed. The empty symbols correspond to the reverse

process where the end configuration from a simulation performed for a given value of the

applied field, serves as the starting one for a subsequent simulation at a lower value of the

field; comparison between the curves corresponding to the filled and empty symbols

allows us to explore hysteretic effects. The circles in Fig. 3 are associated with the use of

the prolate spheroids total dipole moment P and volume V in Eq 5.3b; the squares (and

triangles) use a PS volume inside the droplet whose semi-major and -minor axes are 4

(and ) the length of the full PS. While the results using these different averaging

volumes agree rather well, those that use an averaging volume inside the droplet show

less variation at the lower fields.
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As will be discussed below the internal electric field strength is a function E(Eo,

X) of both the external field (E0 ) and the droplet's aspect ratio (X), and points in Fig 3

below E0 - 0.5 V/nm correspond to a much smaller range of internal fields (E < 0.05

V/nm); consequently, equilibration at such low values of E0 are characterized by poorer

statistics as regards the calculation of the dielectric constant. One observes in Fig. 3 a

pronounced hysteretic behavior of the dielectric constants that correlate with the

corresponding hysteresis that characterizes the evolution of in other physical properties of

the droplet as a function of the applied field (see Fig 1), as the droplet undergoes

transitions between different states. The heavy curve in Fig. 3 (between the two vertical

dashed lines) depicts to a fit of the MD dielectric constants to a theoretical curve relating

c(E) to the internal field (E), plotted versus the external field EO;

In order to explore the predictions of the NLPS model, with its non-linear

dielectric saturation effects, we fit the observed dielectric constants &(E) (Fig. 4) with an

approximation that has been found useful (ref R34,35) in the description of

experimentally observed saturation effects, i.e.,

&(E) = n 2 + WfE L(PE) , (5.4)

where a= a/sj, a- p(n 2+2)po/(3Fo), P=s2b, b=(n 2+2)p0/2kBT), n is the optical refractive

index (n=l for the non-polarizable formamide model used here), to - 0.08087 q-nm

(3.88 Debye) is the molecular dipole moment, p-1 4 .7 molecules/nm 3 is the liquid

density, kB is Boltzmann's constant, T=310K and L(x)=coth(x)-l/x is the Langevin

function; we use the scaling parameters s, and S2 (of order unity) as fitting parameters.
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While other similar functional forms (R35) have been suggested, Eq 5.4 has the merit of

retaining the dependence of the dielectric constant on a host of material properties and the

values of s, and s2 can serve as comparative measures of the dielectric response to that of

other materials. The values sl=s2=l gives the Booth-Onsager formula (R34) for simple

liquids with relatively small molecular dipole moments while sl= \/73/7-1.22, S2=

\'73/3-2.85 give the Booth-Kirkwood formula (R34) in which nearest neighbor

correlations due to the hydrogen bonding (in water) are taken into account in performing

ensemble averaging. Expressing the electric field in units ofV/nm as the units of the, and

using the appropriate parameters for our system, we find for the coefficients a and b

(defining cx and 3 in Eq. 5.4) the values a=21.5 V/nm and b=4.53 (V/nm)-'.

Because of the large variation in the results obtained in our simulations for

internal fields less than 0.05 V/nm, we restrict ourselves to results corresponding to larger

fields (i.e. E>0.05 V/nm) in the fitting analysis. The solid curve in Fig. 4 uses dielectric

constants computed inside an internal "4" size PS, as discussed above, and Eq (5.4)

with sl=0.947 and s2=1.117; a similar result is obtained for the "2 " size internal

averaging volume. It is of interest to note to that Eq 5.4 provides such a good description

of the simulation data with the values of the adjustable parameters s, and S2 close to

unity, as this is the limiting case of using the appropriate density, dipole moment and

temperature for the system being studied with no adjustable parameters.

There are a number of interesting features pertaining to the results displayed in

Figs. 3 and 4 that merit further notice. For the low-field range, where any elongation of

the droplet is essentially insignificant (see Fig. I a before the shape transition the internal

electric field is much smaller than the corresponding external field. ), However, when the
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external field E0 attains a value that just exceeds the critical field (- 0.5 V/nm), leading to

shape instability of the droplet, the internal field E, along with many properties of the

droplet vary largely in a rather marked manner (Fig 1). Note also that in the transition

region from liquid to crystalline droplet of Fig 4 (E - 1.2 V/nm) the curves

corresponding to the liquid and ordered states run (essentially) parallel to each other, and

thus two different values of for the dielectric constant (one for the liquid and one for the

ordered droplet) may be obtained in this region for the same internal field E.

One of the most intriguing observations that we made concerns the finding that

the droplet transforms from a liquid to a solid phase when the dielectric constant &(E)

(decreasing in magnitude with increasing field E) just reaches the value &(Eliqsol) - 18. In

studies of the stability of dielectric drops in electric fields (with no saturation effects, see

R 12 for a review), it has been found that when the dielectric constant c exceeds a value of

about 18, there are two distinct solutions for the droplet shape having conical ends, while

for & < 18 there is only a single solution having rounded droplet ends. In the context of

our study, we may conclude that: when E(E) is above -18, there are conditions involving

interfacial stress balances that restrict the possible shape of the droplet near its ends.

However, when the value of z(E) drops below -18, these restrictions are relaxed, and

concomitantly crystalline order emerges. This suggests that the transition from a liquid

droplet to one with crystalline symmetry, and the associated different boundary

conditions and geometry, is inhibited by the interfacial stresses occurring above &(E) -18

that may drive the droplet to geometries inconsistent with a nascent crystalline form.

It is important to note that the foregoing relations between E0, E and &(E) may be

used to write a defining relation of the electric field strength inside the droplet (E) as a
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unique function E(Eo,k) of the applied field E0 and aspect ratio X. Using the expression

for E(E) given in Eq 5.4 in Eq 5.3 a, one can write (in dimensionless form) a determining

relation for the field strength E in terms of E0 and k,

x0= x + c(k)L(x), (5.5)

where xo=s_)bEo, x=s2bE, and c(k)= abn(k)s2/sI. For given Eo and k (or x0 and k) there is

a unique solution, x, to Eq 5.5, which may be easily found using a simple iterative

method. Consequently, for analytical purposes, the internal field strength inside the

droplet may be viewed as a given continuous function E(Eo,?,) of the external field and

the droplet aspect ratio.

B. Free energy and it's minimization

When the dielectric constant of the droplet fluid is taken to be independent of the

internal electric field, the total free energy in the prolate spheroid (PS) model, Fps= F,oIZ +

Fs,,f, consists of an electrical polarization term Fp,,=-1/2 PE0 and a surface energy

F,,r-yA, where A is the surface area of the PS (ref 23 more), E0 and E are the external

and internal electric field along the z-axis, and P is the total dipole moment of the

droplet along the z axis (see Eqs 5.1-5.3). When the dielectric constant is allowed to vary

with the internal field strength an additional term is necessary in order to obtain a free

energy consistent with the thermodynamic relation (R27) (at constant temperature)

dF = -PdEo. (5.6)
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The integrated form of this relation for the NLPS model is

E( E ))

FNLPS - -1/2 PE 0 + yA() + V&0 /2 Of E 2 ,(E)dE, (5.7)

where &'(E) is the derivative of - with respect to the internal electric field and the

reference point of the free energy is the state with vanishing external field. The third

term, which we denote by Fsat, is associated with saturation effects and is absent when the

dielectric constant is independent of field strength. The form of the free energy may be

rewritten in various ways, having different interpretations. For example, one could

replace E 2 c'(E) in the integrand of Fsat by E(Ed(E)-c(E)) where the derivative of the

displacement field Ed=l/&OdD/dE is the differential dielectric constant which has been

found useful in the study of dielectric saturation phenomena (R35).

As discussed earlier, the electric field, E, inside the droplet may be considered as

a well defined function of Eo and X so that the dipole moment of the droplet P given in Eq

5.3b may also be viewed as a function of E0 and k. The free energy in Eq 5.7 is therefore

a function of the applied external field, E0, which can be viewed as an external control

variable, and the droplet's aspect ratio, k, which characterizes the droplets response to the

applied field as well as it's state of thermodynamic equilibrium. In the differential

dF=aFNLPs/aEodEo + aFNLPS/OX dk, one finds from direct differentiation of Eq 5.7 that

aFNLPS/cEo = -P, while the second term is set to zero, aFNLPS/L? = 0, as this is the

condition that the droplet responds to the applied field by a change in aspect ratio, so as

to minimize the free energy (also o2FNLPS/ak 2 > 0). In performing these differentiations,

one uses the explicit functional dependence of the free energy on E0 and k, e.g. Eq 5.3b.
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Also, it is interesting to note that the derivative of the integral saturation term, (VEO /2) E2

P-(E) aE(EO,))/LE (or CE(E0 ,)/c'?,) cancels exactly identical terms arising from

differentiaion of the polarization term with respect to E0 or ?, . As a result of these

cancellations, aFNLPs/aEo and aFNLPS/O'k give the same functional form as when there is

no saturation term, e.g. OFNLPs/aEo = -P. Also the condition aFNLPS/k = 0 gives a

relation between the derivatives of the depolarizing factor and area,

n' ()p 2/(2EoV)+yA'(X)= 0 that is true both in the original PS model as well as the NLPS

model where saturation effects are included. It is interesting to note here that the latter

equation leads to a simple relation, between the pressure inside the undistorted droplet,

the droplet polarization, and purely geometrical factors

p1&o = (3o/&-o)/ 2 g()), (5.8)

where HIo=2y/R is the pressure inside the droplet of radius R at zero field, g(?X)

[-A0'()/Ao/n'(?,)]I/2 = [-dA/dn]/ 2 , A0=4tR2, and A=A(k)/Ao.

Using the expression for E(E) given in Eq 5.4, one can evaluate the saturation

integral term F,, in the free energy expression (Eq 5.7). The result may be written as

Fsat = -1/2 PES(x), (5.9a)

S(x) = 21n [sinh(x)/x)/(xL(x)] - I , (5.9b)

where In [] is the natural logarithm and x=s2bE (as in Eq 5.5). The free energy

FNLPs=Fpolz+Fsurf+Fsat can now be written as
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FNLPS(Eo, 2 ) = -1/2 PE0 + TAO,) - 1/2 PES(x), (5.10)

with the explicit reminder that all of the variables involved are functions of E0 and X. P is

given in Eq 5.3b in terms of E, &(E) and n(?,). &(E) is given in Eq 5.4 and E(EO, k,) is

uniquely determined from Eq 5.5. The 'saturation' function S(x) has the limits S(0)=O

and S(x)->l for large x so that for large external, and associated internal fields, the new

term in the free energy, Fsa , approaches -1/2 PE. As has been discussed earlier, the

droplet may change phase in sufficiently high fields and the above analysis will be

modified.

In studies of fluid droplets interacting with external fields such as gravitational or

electrical fields, and possibly in the presence of surfaces where interfacial energies play

a role, it is common to define dimensionless numbers, called Bond numbers, that

characterize the ratio (and relative importance) of the various body forces to surface

tension forces at the liquid interfaces. Gravitational and electrical Bond numbers are

common. In studies of droplets in electric fields, an electric Bond number BE=OEO2R/ ,y is

frequently used, where y is the surface tension, expressing the ratio between electrical

polarization forces, tending to elongate the droplet, to capillary forces tending to contract

the droplet; depending on the particular variants of the above definition are sometime

used. We will employ here the definition of BE given above, and we normalize the

energies to a dimensionless form by dividing them by the surface energy of the

undeformed droplet: Fps -(Fps/(4nR 2'y) and similarly for it's components. For our system

47rR 2y-0.01 19 eV/molecule. We have (see refs. R23, R27)
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FNLPS=Fpolz+Fsurf+Fat , (5.11 a)

FpoI,=-(BE/6)(&-l)/{ 1+(:-l)n} , (5.1 ib)

Fsf =(I /2)(1-e 2 )"3)[ 1 +(sin-' e)/(e(l -e2)(I/2))] , (5.11 c)

Fsat = Fp.1 (E/Eo)S(x). (5.11 d)

For a given value of the external field E0, the energy FNLPS is a function of the

droplet shape through the aspect ratio X, appearing in the eccentricity e(X) and internal

electric field E(E0,X), and it may exhibit one or more local minima or maxima with

respect to variations of X. The values of the aspect ratio X associated with minima of

FNLPS define the stable (or metastable) droplet shapes (ref R23). We will perform the

variation of the aspect ratio numerically to find the predicted stable configurations of the

droplet for a wide range of external fields and compare a number of predictions from the

above NLPS model, based on continuum macroscopic theory, with results of the MD

simulations. Specifically, for a given field E0 we assume an initial value of the aspect

ratio X=1 and vary X in small increments (AX=0.01), evaluating the free energy and

recording the extremal points for each value of E0 . Key ingredients in this model are the

new free energy contribution Fsat, the function c(E) determined as described above using

MD results, and the internal field strength E(Eo, X) which is obtained using Eq 5.5 in the

course of the incremental X search for each external field E0 .
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The aspect ratios of the droplet deduced directly from the MD simulation data by

means of axial and radial binning of the molecular number density (described earlier, see

sec. IV) are shown in Fig. 5 (symbols) as a function of the electric bond number BE. The

aspect ratios that were found to minimize (through the numerical search procedure

outlined above) the NLPS free energy for each value of E0 are given as the solid curves.

The regions associated with field strengths below E0 - 0.5 V/nm and above - 0.625 V/nm

(the black curves) correspond to the NLPS free energy FNLPS having exactly one

minimum with respect to the aspect ratio. Within the S-shaped region (E0 - 0.5 - 0.625

V/nm), there are two minima (black and gray segments) and one maximum (dashed

segment). We call attention to the very good agreement that is found between the MD

results and the predictions of the NLPS model developed here. In particular, note the

MD point (open symbol) that was obtained by lowering the applied field from a stable

configuration into the metastable region (gray curve).

It is of particular interest to assess the contribution of the saturation term. The

predicted aspect ratios obtained from the NLPS (and PS) model are shown in Fig. 5

(upper dashed line) up to the point of droplet crystallization for a model where one takes

the dielectric constant of the droplet to be independent of field strength (the normal PS

model) and equal to the zero field value c(E=0) - 39.2 (see footnote R46). If the

dielectric constant &(E) is allowed to vary, but the dielectric saturation term Fsat is not

included in the free energy minimization, the predicted aspect ratios vary as depicted by

the lower dashed curve in Fig 5. From these results we conclude that the saturation term

is essential for a correct description of the field-induced droplet shape.
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One can compute the free energy via several routes. Besides the minimization of

the NLPS model free energy described above one may also use the MD results and the

basic relation in Eq 5.6 to evaluate directly

FMD = -Of 0 PMD(Eo)dEo, (5.12)

where PMD(E0) is a piecewise polynomial fit to the calculated dipole moments of the

droplet (proportional to the data presented in Fig. 1 d). We present in Fig. 6 the free

energies obtained from both the MD results, FMD, and the NLPS model, FNLPS. The

energies are normalized through division by the surface energy at zero field F,u,M -- 47UR 2y

(-0.0119 eV/molecule), resulting in the NLPS free energy FNLps being equal to unity at

E0=0. The normalized free energy, FMD, from the MD data is shifted upward by 1.0 for

comparison with FNLPS.

The free energy FMD, Eq 5.12, obtained directly from the MD data (shown as a

dashed line in Fig. 6) is in remarkable agreement with the numerical minimization of the

free energy FNLPS (Eqs. 5.7, 5.10-5.11) based on the non-linear prolate spheroid model.

As was done with the aspect ratios (Fig 5), we show the predicted free energies (light

dashed lines) obtained when a non-varying dielectric constant is used, F=&(E=0), or when

a non-constant &(E) is employed but asaturation term is not included in the free energy

expression. This reaffirms our conclusion concerning the importance of including the

term describing saturation effects in the free energy.

The individual contributions to the free energy, arising from the polarization,

surface and saturation terms, are displayed in Fig. 7. We show the predictions of the

NLPS model, developed for a fluid droplet, up to the point of droplet crystallization.

However for the more general MD free energy (Eq 5.12) we extend the integration into

32



the ordered droplet region. We can also calculate the polarization, surface and saturation

terms based solely on the configuration of the droplet as given by the MD data (this does

not involve any minimization). These contributions are depicted by the dashed curves in

Fig. 7, and they are fund to overlap those predicted by our model (shown by the solid

curves).

It has been noted (R27) that an increase in the permittivity of a medium should

result in a lowering of the free energy. In the present case, we find a lowering of the

dielectric constant relative to its zero field value and one should expect a resulting

increase in the free energy. This is not immediately apparent from Eqs 5.7, 5.10 and 5.11

where the saturation term is strictly negative. However, we note from Fig. 6 that the free

energy is in fact always larger than the values it would have if one employed a constant

dielectric constant. The effects of a varying dielectric constant also influence the

polarization term Fp of the free energy and it is the minimization of the total free energy

with respect to the aspect ratio, involving the interplay of all of the contributions to it,

that determines the droplets state and free energy.

A most interesting relationship is found the variations in the surface energy and

the contributions to the droplets potential energy arising from the Van der Waals (VdW)

component of the internal energy. The normalized surface energy is y a() / (y ((X=I)

(where a(X) is the area of the prolate spheroidal droplet) and it is a function of the shape

of the droplet only (Eq. 5.1 ic). This is shown as the upper dashed curve in Fig. 7 and was

computed using polynomial fits to the observed MD aspect ratios X. The VdW

contributions to the internal energy, averaged for each MD equilibration (also normalized

by dividing by 47rR 2 y -0.0119 eV/molecule and shifted to 1.0 in order to coincide with
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F,ud(Eo=O)) is shown in the upper part of Fig 7 (triangles). Up to the droplet

crystallization point we find close correspondence between the variations (from zero

field) of the Van der Waals internal energy contributions and the variations of the surface

energy (even in the metastable region). Crystalline ordering of the droplet is accompanied

by a drop of the VdW energy to its low field value (i.e. E0 < 0.5 V/nm). Thus, in the

liquid regime the variations in surface energy of the droplet are closely related to

variations in the VdW potential energy. Since the surface energy relates to the reduced

number of nearest neighbors for molecules located at the surface region, it is reasonable

to expect that variations in the short-range VdW interactions will indeed correlate with

variations in the surface energy.

C. Entropy

To gain a better understanding of the driving forces behind the field-induced

structural changes of the droplet, we compute changes in free energy and entropy that are

associated with the droplets response to the applied electric field. Taking the zero electric

field point as a reference, the changes in Helmholtz free energy are given by

AF=AU-TAS, in which AU and AS are the changes in internal potential energy and

entropy, respectively as the electric field E0 is raised. The calculation of the free energy

AF=FMD, through numerical integration of the polarization energy (Eq 5.12), was

described in the preceding section and is shown in Fig 8. Along with the free energy

FMD, we display again in Fig 8 (dashed line) the free energy of the non linear prolate

spheroid model, AFNLPS (given relative to it's value for zero field), as obtained from the

minimization of the prolate spheroid free energy, to illustrate the remarkable agreement
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between the MD and analytical model results (note that the energies are again scaled by

the zero field surface energy).

The potential energy AUMD shown in Fig 8 was obtained as a piecewise

polynomial fit to the time-averaged potential energies obtained from the MD

equilibration for each applied field E0 . The marked drop in potential energy that occurs

when the droplet orders corresponds to a latent heat (enthalpy of fusion) AH-0.045

eV/molecule or -4.3 kJ/mole (the experimental enthalpy of fusion for bulk formamide at

276K is - 8 k/mole, ref. R42).

The entropic contribution to the free energy, -TAS=AF-AU, is also shown in Fig

8. We find in the low field region (EO less than 0.5 V/nm) prior to elongation of the liquid

droplet that -TAS and AU are both negative, with essentially the same magnitude, and the

two become more negative as E0 increases and approaches the point of instability. The

entropy therefore increases with field strength for small droplet elongations where the

field may only influence the molecular coordinates only slightly. Subsequent to the sharp

transition of the droplet to a more highly elongated state, the molecular dipoles become

more highly aligned and the entropic term -TAS changes sign and takes positive values, a

opposite to the internal energy AU, and it makes a large contribution to the free energy,

corresponding to a lowering of the entropy of the droplet as the field is increased further.

The entropy decreases roughly linearly with the external field strength E0 and the

entropic component, -TAS, of the free energy change remains about 1/3 the magnitude of

the potential energy component AU. The entropy of fusion, given by AH/(3 1 OK), is - 14

J/mole 0 K (the experimental value for bulk formamide is -30 J/mole 0K, ref. R42). We
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note that a depression in the enthalpy and the entropy of melting for nano-scale clusters is

a current topic of both experimental and theoretical interest (Refs. R44 and R45).
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FIGURE CAPTIONS

FIGURE 1 Averages of droplet properties illustrating a rich variety of both hysteretic

behavior and varied types of accompanying correlations in the droplets properties as the

applied E-field is raised and lowered. Symbols correspond to points reached either by an

increase (filled symbols) or lowering (open symbols) of the E-field. Note that when the

droplet undergoes elongation at E-0.5 V/nm, the aspect ratio (a) increases from 1.5 to 12

and the normalized z-electric dipole moment (d) also shows a pronounced increase from

-0.1 to 0.7. However the droplet remains liquid and there are no changes seen in the

diffusion constant (b) and 06 order parameter (c). The liquid droplet elongates gradually

until a field of E-1.5 V/nm is reached at which point it crystallizes. The changes in the

averages now are opposite to those seen when the droplet initially elongated. The aspect

ratio (a) and z-dipole moment (d) change little while the diffusion constant (b) essentially

goes to zero and the 06 order parameter (c) increases dramatically reflecting the liquid to

solid transition. Little change is seen for higher E-fields. As the field strength is lowered

from the point of crystallization, the droplet does not immediately re-melt but exhibits a

hysteretic solid/liquid coexistence to a lower electric field strength of I V/nm, below

which it returns to the same liquid state conditions as before. The trends seen in the

averages during this stage of solid/liquid coexistence are essentially the reverse of those

seen when the liquid droplet approached the critical field for freezing: there are very large

variations in the diffusion (b) and 06 order parameter (c), and minor changes in the

aspect ratio and z-dipole moment. The averages change gradually until the lowering E-

field reaches 0.5 V/nm where it again displays hysteresis in that it does not return to it's
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original stats but remains slightly elongated with aspect ratio - 8, see (a), and normalized

z-dipole moment (d) of- 0.4. Below E=0.5 V/nm the droplet returns to its initially

unelongated state.

FIGURE 2 Images illustrating the progression of stable states of the formamide

droplet as the externally applied electric strength, E, is initially raised (top) and later

reduced (bottom). At zero field, the droplet is undistorted with aspect ratio k=l which

increases to k=1.5 at E=l.5 V/nm. As the field E is raised above the critical field to

0.625 V/nm, the droplet elongates abruptly to an aspect ratio of k=12. When the electric

field strength exceeds E-1.5 V/nm, the droplet crystallizes, changing little as the field is

further increased. As the E-field is lowered, the droplet displays hysteretic behavior

(bottom) and exhibits a solid/liquid coexistence until a lower field of 1.0 V/nm is reached

at which point the system returns completely to the liquid state. Shown at the bottom are

side views showing liquid/solid coexistence, lattice planes as they appear under 30 degree

axial rotations of droplet and an end view down the long axis of the entire droplet.

Overlaid on the droplet is a curve showing the variation of the average z-component of

the electric dipole moment per molecule normalized by the dipole moment of a

formamide molecule. The strong correlation seen between the z-dipole moment and

degree of droplet order is also reflected in other structural order parameters (e.g. see Fig.

1).

FIGURE 3 Variation of the dielectric constant with the externally applied field

strength E0. One notes the transition to an ordered droplet when E0- 1.4 V/nm (and F- 18)

and a pronounced hysteresis as the field is decreased after the droplet has ordered. The

thick dark curve derives from a fit of &(E) to the Booth-Onsager equation and its use in

42



the NLPS free energy minimization. Note the predicted metastable region (curved light

gray line) and unstable region (curved light dashed lines) for E0 field values in the range

-0.5-0.6 V/nm.

FIGURE 4 Variation of the dielectric constant with the local field E inside the

droplet. One notes the transition to an ordered droplet when E 0-1.4 V/nm (and E- 18) and

a pronounced hysteresis as the field is decreased after the droplet has ordered. The thick

dark curve derives from a fit of MD data to the Booth-Onsager equation

FIGURE 5 Droplet aspect ratios k vs electric Bond number; predicted through the

minimization of free energy with respect to ,, The two gray dashed curves are the result

of using a free energy expression with no saturation term with a constant dielectric

constant (top curve)and a variable dielectric constant (lower curve), neither of which

correctly describes the MD results. The S-shaped region near BE - 0.25 shows predicted

metastable states (dark blue line) and stable states (lower red line), both of which are

associated with an observed MD droplet state. The light blue line is where maxima of the

NLPS free energy occur as the aspect ratio is varied and correspond to predicted unstable

states. When a droplet is in the metastable region and the applied field is lowered to the

point where the unstable region is reached the droplet aspect ratio will abruptly fall to the

stable points of the lower red curve.

FIGURE 6 Comparison of the free energy FNLPS (red curve) as computed by the

minimization, for each E0, of the NLPS free energy with respect to the aspect ratio and

the free energy FMD (blue dashed curve) computed directly from the integration of the

MD total dipole moments. The two light dashed curves show the predicted free energy
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for a constant and a variable dielectric constant when the free energy does not include the

saturation term.

FIGURE 7 Contributions to the free energy FNLPS (red curve) as computed by the

minimization, for each E0, of the NLPS free energy with respect to the aspect ratio. The

same contributions (dashed lines) computed by substituting the observed MD results into

the expressions for the three terms of the NLPS free energy (no minimization is

involved). One can note very close agreement in all of the quantities between the MD

results and the NLPS model predictions. Also shown is the close correspondence between

the relative variations in surface energy and the observed relative variations in the vdW

component of the internal energy. The triangles (filled for increasing EO and empty for

decreasing field) give the MD calculated VdW contribution to the internal energy.

FIGURE 8 The entropic contribution (red curve) to the free energy (green curve).

The entropy increases (-TAS decreases) with increasing field for small droplet extensions

and decreases for increasing fields after the droplet has become highly elongated. The

entropy reaches a maximum in the region E0 - 0.5-0.6 V/nm where the droplet makes a

transition to a more highly elongated state.
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